
A Solaris Backup Script How-To
Stanley J. Hearn
GIAC GSEC Practical v 1.3
February 3, 2002

Abstract
A backup strategy is more complex then creating a redundant copy of disk storage and considering
the strategy a success. A successful backup strategy must detail how the backup media are rotated,
how the media are archived, how the system will be recovered, and what the backup software will do
to create the backup. Although all parts of the backup strategy are equally important, this paper will
focus on the backup script and will detail a flexible backup script that uses built-in Solaris software
tools which create a reliable local backup of a Solaris machine running Oracle.

Introduction
The backup script will accomplish the following goals:

• Create a backup archive that is as easy to restore a single file as it is to restore an entire file
system.

• The backup script will run autonomously. The only human intervention will be to swap
media and review output.

• All mounted file systems will be backed up, not just a fixed list. When new file systems are
mounted, they are automatically backed up without having to modify the script.

• Allow for a list of file systems to be excluded from back up.
• Meet the backup requirements of Oracle.

• Place all tablespaces in backup state, not just a fixed list. When new tablespaces are
added, they are automatically dealt with without having to modify the script.

• separately backup Oracle redo logs
• The script will create a detailed log of the backup.
• The script will send an abbreviated email summary of the backup to the administrator
• After a successful backup, the script will verify to some extent the contents of the backup

media.
• Check the system log for hardware errors.
• The backup script will be able to run on any Solaris 2.6 or greater machine without

modification.

What follows is a description of a Bourne shell backup script designed to run on Solaris 2.6 or
greater running Oracle that will meet all of the above criteria. See Listing 1.

Before We Begin
It is essential that any backup script be tested before being placed into production. A complete
backup procedure would also require periodic testing to ensure that it continues to meet the backup
requirements including the ability to successfully recover from a catastrophic system failure in a
timely manner.

Remember to meet the backup requirements of all non operating system applications running on the
system. Recovering to the point that the operating system is running is merely the first part of the
restoration process. The second and equally important part is application data recovery. If the
application can't be recovered, then the disaster still exists.

Print disk partition information and any hardware-specific information and place it in a safe secure
location. This information will make a disaster recovery less painful. You can use this script to
print the partition information for disks on a Solaris system. I cannot stress enough the importance
of having this information at hand when you're in crisis mode during a disaster.

f or mat < / dev/ nul l | \
nawk ' / [0- 9] . * \ . / { syst em (" pr t vt oc / dev/ r dsk/ " $2 " s2") ; \
pr i nt " \ n\ n\ n- - - - - - " } ' > $TEMP_FI LE

Don’t ever buy more disk space than you have the ability to back up. When you calculate the cost of
purchasing more disk space, always include the cost of enough tape storage to accommodate it. The
backup script described in this paper requires that all data fit on one tape for unattended operation.

The Backup Script's Nuts and Bolts
All backup tools have their strengths and weaknesses. This script will use two tools to copy
information to our media, ufsdump and cpio. Each one has advantages over the other. The script
will leverage the advantages of both by creating backups that alternate between them.

ufsdump and ufsrestore are the Solaris equivalent of dump and restore. In Solaris the default file
system is UFS. Dump and restore are dependent on the underlying file system type. You must
restore a dump to the same type of file system as its source. A dump from different system types,
Linux, Irix, or Solaris are not compatible. ufsdump creates a backup of an entire disk partition. It
can perform a full or incremental backup. However, this backup script will always perform a full
level 0 dump. The ufsrestore tool has an interactive restore feature of browsing the tape file image
and selecting exactly which files to retrieve.

cpio has the ability to back up individual files. cpio is also capable of backing up all mounted file
systems in one archive. However, we will back up each file system separately. The reason for doing
this is that it makes it easier and quicker to restore if you have many small file systems stored on the
media instead of one very large one. A system that won't boot and only needs the root file system
restored will be more convenient to recover if our root partition is in a separate cpio archive.

The cpio version that ships with Solaris doesn't have an option to restore an absolute cpio archive to
a relative location. Therefore we will only create cpio relative archives. If you're disaster recovery
plan allows you to use non-standard operating system tools, then I would suggest using GNU cpio,
but make sure you have a compiled copy that can be easily restored to a failed system booted to
CDROM recovery mode. You could also overcome this limitation of absolute restoration by chroot-
ing to the recovery mount point and performing the restore.

The script will create a relative cpio archive, but how relative? If you list the contents of a cpio
archive it is not always obvious what mount point the archive was generated from. It may be easy to
determine if its a standard mount point. For example, if you see directories like . / j oe, . / st eve,
. / st an, etc, it would be obvious that this archive was generated from / home. But if you saw
directories like . / ORACLE, . / ser ver r oot s , etc, it would be less obvious which file system they
belong in. On an Oracle system the . / ORACLE directory can in fact appear at several mount points.

Because of this ambiguity the backup script performs a cpio archive with file names relative to the
root directory. This simply means that instead of backing up a file system relative to itself or its
mount point, it will be backed up relative to root. For example a file system named sr c in
/ usr / l ocal / sr c , won't be backed up as . / , but will be backed up with the name of
. / usr / l ocal / sr c . Don't be confused, we are still backing up individual file systems, we're just
making sure that their file names will be relative to the root directory.

However, Solaris cpio has a problem with archiving the root directory relative to itself. Therefore
we will place a sed statement directly following the find command to convert " . / " to " / " .

f i nd . ${ FS} - pr i nt - xdev | \
sed - e ' s / ^ \ . \ / $/ \ / / ' | \
cpi o - oacvC 32768 –O / dev/ r mt / 0 \
2>>/ usr / l ocal / cpi o- l og/ wr i t e. 020101. er r \
1>>/ usr / l ocal / cpi o- l og/ wr i t e. 020101

You are probably quite familiar with the options used for cpio. The - O / dev/ r mt / 0 allows for
the separation of the archive device, standard error, and standard output. We can log the list of files
we've sent to cpio in one log file and log errors in another.

Special Considerations must be taken to back up Oracle databases. Simply backing up the file
systems that contain the data files is not enough. These files are very large and change continuously.
There are several methods to back up Oracle databases, and more than one method should be
implemented. Three methods are described below.

The first method is a cold backup. This involves completely shutting down the database which
restricts any process or user from modifying the data files. The data files become static and are
simply copied like any other unchanging file. Cold backups on a production system are not practical
because during the backup the database is unavailable.

The second method involves exporting the database information to disk files and is known as a
database export. Database exports can be done while the database is running making it a better
alternative than cold backups for production systems. Also by exporting your database to an NFS
mounted file system, this will further safeguard your database for recovery purposes. Just make sure
that the NFS host machine is backed up adequately and is secure. The export method is also flexible
in that one can pick and choose what to restore from an export. For example, if someone
accidentally drops a database table, just that table can be retrieved from the last export. Run the
export function in a cron job daily at a time when the database has the least amount of activity.

The third method, which the backup script will directly utilize, is called a hot or on-line backup.
This involves running the database in the ARCHIVELOG mode. When the tablespaces are placed in
backup mode, the main data files will remain quiescent and all database transactions will be written
to the redo logs. This gives the backup program time to backup these large data files while they are
not changing. After these files are copied, the database is taken out of ARCHIVELOG mode and the
redo logs are copied to the backup media. CAUTION: Do not begin a database on-line backup
during peak database usage times because Oracle will write complete database blocks instead of just
transactions to the redo logs and this can create excessive database logging. NOTE: if the script
abnormally exits, you'll need to manually take the tablespaces out of backup mode.

To restore a database that was backed up using the ARCHIVELOG mode method, you would restore
the datafiles and the redo logs. Then you would play the redo logs forward to bring the database
exactly back to the same state when the redo logs were created. Consult with your database
administrator to verify that you're backing up everything he will need to recover from a disaster and
practice your disaster recovery.

Before the backup begins, put each tablespace in backup mode. After the backup is complete take
each tablespace out of backup mode. Then back up the redo logs which contain the database
transactions. When the script is backing up an Oracle system, the redo logs are always added as a
cpio archive at the end of all the file system backups on the media. Even if a ufsdump backup is
performed, there will always be a cpio archive at the end of the tape for systems running Oracle.

The backup script will automatically use Oracle's server manager to obtain a list of current
tablespace names and write them to a file. It will do this automatically so that any new table spaces
that are added will always get backed up without requiring script modifications. Then it will insert
commands before and after the tablespace names to create two Oracle server manager scripts, one
script to put the tablespace names in backup mode and one to take them out of backup mode.

These are the Oracle server manager commands to prepare a tablespace for backup and to end the
backup.

al t er t abl espace [t abl espace_name] begi n backup # bef or e
al t er t abl espace [t abl espace_name] end backup # af t er

At the end of the backup when the tablespaces are taken out of backup state, the script sleeps for 120
seconds to allow for all transactions to be flushed to the redo logs. Then the redo logs are written to
the tape in a cpio archive.

It will help the database administrator perform a replay of the redo logs after a disaster if he has the
archive sequence numbers. The backup script will execute an ar chi ve l og l i s t server
manager command to get this information for inclusion in our backup report.

This script only places one Oracle database instance in ARCHIVELOG mode. It would not be too
difficult to modify the script to allow for multiple instances.

M agnetic Tape Control (mt) sends commands to a tape drive. Many of these commands are
familiar, but some are not. The script will use these mt commands.

• rewind – rewind the tape
• rewoffl – rewind the tape and eject it (go offline)
• eom – space to end of recorded media on tape
• weof – write count EOF marks at current position on tape
• status – display current status of tape

The summary file is the first thing that goes on the tape. This summary file will serve to identify
this backup tape. When you need to identify a tape or restore a system, you’ ll appreciate this
summary file. The summary will contain:

• The name of the system that created the backup.
• The date when the backup was created.
• The format of the backup. Was it created with cpio or dump?
• A list of file systems, their mount points and sizes (output of df command).
• The order in which the file systems appear on the tape.
• Recommended procedures for restoring the tape.

The summary file can be read from the tape using the command:

cat < / dev/ r mt / 0

A backup configuration file is used to keep machine specific configurations so that the
administrator can make one copy of the backup script for all Solaris systems and place host specific
values outside of the backup script.

The host configurable parameters are:
TAPEDEV is the tape device name with rewind
TAPEDEV_NR is the tape device name with norewind
HARDWARE_LOG is the name of the system log
BU_LOG_DI R is the directory where the backup logs are created
EXCLUDE_FS space delimited set of file systems to not include in the backup
I S_ORACLE_MACHI NE Is this a machine running Oracle?
ORACLE_REDO_LOG_DI R is the directory where the redo logs are kept
ORACLE_HOME home directory of Oracle
ORACLE_SI D instance SID of Oracle database to backup

The Backup Script Flow (L isting 1)
The script will keep a count of the number of file marks that are written to the tape. At the end of
the backup we'll use that count to validate the number of file marks actually on the tape.

One argument to our backup script will determine between a cpio and ufsdump backup. It will
assume that if anything besides “dump” is specified, a cpio backup will be performed.

The script will set a few default values for configuration variables and then source the configuration
file.

The script will verify that the variables TAPEDEV and TAPEDEV_NR point to character special
devices. If they do not, it will exit with an error message.

When the system is writing to tape, tape error messages will be written to the system log. If you
don’t examine the log, you’ ll not know when there are “sense key media errors” or “excessive write
errors.” You may have a problem and not know about it. The backup script should display the
entries that are put into the log during the backup process. This can be done by counting the number
of lines in the log when the backup began.

LOG_START=` wc - l < / var / adm/ messages`

The summary file is created and copied to the tape. This is the first file that appears on all backup
tapes.

When the backup is finished, display the entries from this count to the end of the log file to show any
hardware errors that may have been placed there.

cat / var / adm/ messages | sed - e " 1, ${ LOG_START} d"

Be careful to not run backups at a time when the system logs are being rotated. The output will not
be accurate.

Attempt to rewind the tape device. If this fails, exit with an error message. Also write an eof mark
to the tape to make sure it is writable.

mt –f / dev/ r mt / 0 weof 1

The return status of mt is checked by using this if statement after a rewind attempt and after writing
an weof.

i f [${ ?} –ne 0] ; t hen
 echo " Er r or Message"
 exi t 1
f i

Programmatically get the list of currently mounted file systems. On Solaris the file systems are
called UFS file systems. The –F option for the df command specifies which file system type to list.
We then pipe the output to cut to get only the first column of the df output. Finally we sort the file
systems so that dependent file systems get backed up before independent ones (/ usr / l ocal is
backed up before / usr / l ocal / sr c , etc) This is done to facilitate a restore.

FS=` df - F uf s | cut - d' ' - f 1 | sor t `

Because we are automatically obtaining a list of mounted file systems to back up, we have included
a facility to exclude file systems from the backup. The variable EXCLUDE_FS may contain a

space-delimited list of file systems for this purpose. The script steps through a list of each mounted
file system to see if it appears in our excluded list. If it doesn't appear, then it adds that file system
to the list of file systems to back up. The variable FILESYSTEMS will contain the list of the file
systems the script will back up.

The next task the script will perform is to get a list of the tablespaces and build the two Oracle server
manager scripts we'll use during the backup. We'll then put the tablespaces in backup mode.

Depending on the parameter passed to the backup script, it will perform a ufsdump or a cpio back up
of the file systems.

If the backup is of an Oracle machine, then the Oracle tablespaces are taken out of backup mode and
the redo logs are written as a cpio archive at the end of the tape.

After the tape is created, we’ ll count the number of file systems on the tape and compare that to the
number that we wrote to the tape and print a message indicating our findings. The eom command
will move the tape forward just past the last archive file. The st at us command will display how
many file marks are on the tape.

/ usr / bi n/ mt - f / dev/ r mt / 0n eom
FMARKS_COUNT=` / usr / bi n/ mt - f / dev/ r mt / 0n st at us | \
 awk ' / f i l e no/ { pr i nt $3 } ' `

When we’re done we’ ll output the date and time and then we’ ll rewind the tape and eject it. It is
important to eject the tape to safeguard against overwriting the backup.

Scheduling the Backup
Schedule the backup job when the system and database have the least amount of activity. The output
of the script should be emailed to the administrator. An example crontab entry that would run at
1:15 am would look like the following. It schedules a ufsdump backup to occur on Monday,
Wednesday and Friday. A cpio backup will occur on Tuesday and Thursday.

15 1 * * 1, 3, 5 / usr / l ocal / bi n/ backup dump 2>&1 | \
 / usr / ucb/ Mai l –s " dump Backup" sysadmi n@your doman. com
15 1 * * 2, 4 / usr / l ocal / bi n/ backup 2>&1 | \
 / usr / ucb/ Mai l –s " cpi o Backup" sysadmi n@your doman. com

Conclusion
This paper demonstrates that a reliable backup script can be created with built-in UNIX tools. The
script satisfied all of the requirements set forth. The script created a backup that is easy to restore by
making all tape archives relative to the root directory and by placing a helpful backup summary
description at the beginning of each backup tape. A host-specific configuration file will allow this
script to be used on many Solaris machines without modification. It was written to run without
human intervention. The script programmatically obtains a list of mounted file systems to back up.

Special considerations were made to accommodate the Oracle database application software by
placing the tablespaces in backup state using the Oracle server manager before backing them up and
by separately backing up the Oracle redo logs. All output from the backup tools was logged and an
abbreviated output was generated which included any errors written to the systems error log. After
the backup was complete the script verified that the file archive count that existed on the tape was
equal to the file archive count written to the tape.

There are a few areas in which this script could be improved
• allow for multiple tape devices
• allow for backups to remote tape drives
• allow for additional command line parameters to specify things like alternate configuration

file, included or excluded file systems
• deal with multiple Oracle database instances
• perform more extensive integrity checks of backup data
• migrate to Kourne shell for using subroutines

#! / bi n/ sh
#
#
Usage: backup [cpi o | dump]
#
cpi o Per f or m backup usi ng cpi o (def aul t)
dump Per f or m backup usi ng uf sdump
#

Set def aul t conf i gur at i on var i abl es
TAPEDEV=' / dev/ r mt / 0c'
TAPEDEV_NR=' / dev/ r mt / 0cn'
HARDWARE_LOG=' / var / adm/ messages'
BU_LOG_DI R=' / usr / l ocal / backupl ogs'
EXCLUDE_FS=" "

expor t TAPEDEV TAPEDEV_NR HARDWARE_LOG BU_LOG_DI R EXCLUDE_FS

I S_ORACLE_MACHI NE=" NO" # Machi ne doesn' t have Or acl e i nst al l ed
ORACLE_REDO_LOG_DI R=" "
ORACLE_HOME=" "
ORACLE_SI D=" "
expor t I S_ORACLE_MACHI NE
expor t ORACLE_REDO_LOG_DI R ORACLE_HOME ORACLE_SI D

CFG=' / et c/ backup. conf '

See i f host conf i gur at i on f i l e exi st s
i f so t hen sour ce i t
i f [- f $CFG] ; t hen
Get di f f er ent set t i ngs f r om def aul t
 . $CFG
f i

Get dat e i n t he f or mat YYMMDD
YMD=` dat e +%y%m%d`

i f [! - c ${ TAPEDEV}] ; t hen
 echo " ${ TAPEDEV} i s not a char act er speci al devi ce"
 exi t 1
el i f [! - c ${ TAPEDEV_NR}] ; t hen
 echo " ${ TAPEDEV_NR} i s not a char act er speci al devi ce"
 exi t 1
f i

i f [! - d ${ BU_LOG_DI R} - o ! - w ${ BU_LOG_DI R}] ; t hen
 echo " ${ BU_LOG_DI R} doesn' t exi st or i sn' t wr i t abl e"
 exi t 1
f i

echo " ### Backup St ar t i ng at ` dat e` "

LOG_START i s t he number of l i nes i n our har dwar e l og
when t he backup began. We' r e not concer ned wi t h anyt hi ng
t hat occur r ed bef or e now.
LOG_START=` wc - l < ${ HARDWARE_LOG} `
st r i p l eadi ng and t r ai l i ng spaces

LOG_START=` expr ${ LOG_START} `

Rewi nd t ape
mt - f ${ TAPEDEV} r ewi nd

Check mt r et ur n st at us
i f [${ ?} - ne 0] ; t hen
 echo " * * * No t ape l oaded or dr i ve of f l i ne * * * "
 exi t 1
f i

Wr i t e EOF t o t ape t o t est t hat i t i s wr i t abl e
mt - f ${ TAPEDEV} weof 1

Check mt r et ur n st at us
i f [${ ?} - ne 0] ; t hen
 echo " * * * Tape i s wr i t e pr ot ect ed * * * "
 exi t 1
f i

BACKUPTYPE=" cpi o"
i f [" ${ 1} " = " dump"] ; t hen
 BACKUPTYPE=" dump"
f i

Get l i st of uni x f i l e syst ems t o back up
MOUNTEDSYSTEMS=` df - F uf s | cut - d' ' - f 1 | sor t `

Remove excl uded f i l e syst ems f r om l i st
f or FS i n $MOUNTEDSYSTEMS
do
 case " ${ EXCLUDE_FS} " i n

 # I f i t s excl uded do not hi ng
 * " ${ FS} " *) ; ;

 # Add ent r y t o l i st
 *) case " ${ FI LESYSTEMS} " i n

 # Li st i s empt y so t hi s i s t he f i r st ent r y
 ' ') FI LESYSTEMS=" ${ FS} " ; ;

 # Li st cont ai ns ent r i es so append t o l i st
 *) FI LESYSTEMS=" ${ FI LESYSTEMS} ${ FS} " ; ;
 esac; ;
 esac
done

Bui l d backup summar y f i l e t o be put f i r st on t ape
cat << HEREI S > / t mp/ backup. i dent . $$

Backup of Host name: ` host name` st ar t ed on ` dat e`

Tapedev: ${ TAPEDEV}

${ BACKUPTYPE} of :

St at e of f i l e syst ems t o back up at st ar t of backup
` df - k $FI LESYSTEMS`
###

HEREI S

i f [- n " $EXCLUDE_FS"] ; t hen
 cat << HEREI S > / t mp/ backup. i dent . $$
St at e of f i l e syst ems t o excl ude f r om back up
` df - k $EXCLUDE_FS`
###

HEREI S
f i

i f [" ${ I S_ORACLE_MACHI NE} " = " YES"] ; t hen
 cat << HEREI S >> / t mp/ backup. i dent . $$
###
 Thi s machi ne i s r unni ng Or acl e. The l ast ar chi ve on t hi s t ape
 I s a CPI O ar chi ve of t he REDO l ogs i n $ORACLE_REDO_LOG_DI R
###

HEREI S
f i
cat << HEREI S >> / t mp/ backup. i dent . $$
RESTORE I NFORMATI ON:

Al l backups ar e done r el at i ve t o t hei r r espect i ve f i l e syst ems. Change t o t he
t op l evel of t he f i l e syst em wher e t he f i l e shoul d be r est or ed bef or e r unni ng
t he r est or e command.

cpi o - i cvC 32768 < / dev/ r mt / 0cn [FI LE_TO_RESTORE]

uf sr est or e xvf s / dev/ r mt / 0 [FS_NO] [FI LE_TO_RESTORE]
 NOTE: FS_NO i s t he number of f i l e syst ems i nt o t he t ape

HEREI S

Wr i t e backup summar y as f i r st f i l e on t ape
cp / t mp/ backup. i dent . $$ ${ TAPEDEV_NR}
r m / t mp/ backup. i dent . $$

Keep count of number of f i l e ar chi ves wr i t t en t o t ape
st ar t at 1 because t he backup summar y
FS_COUNT=1

i f [" ${ I S_ORACLE_MACHI NE} " = " YES"] ; t hen
 ######
 # Or acl e Speci f i c Sect i on
 ###

 # Wi l l cont ai n al l t abl espace names (Or acl e adds . l og ext ensi on)
 SN_FI LE=' / t mp/ spacenames'

 # I nvoke Or acl e t o get l i st of t abl espace names
 echo
 su - or acl e - c ${ ORACLE_HOME} / bi n/ svr mgr l <<HEREI S

connect i nt er nal
set t er mout of f
spool ${ SN_FI LE} ;
sel ect t abl espace_name f r om sys. dba_t abl espaces;
spool of f ;
exi t ;
HEREI S

 # These ar e t he Or acl e sever manager scr i pt f i l es t hat we wi l l
 # cr eat e wi t h our l i st of t abl espace names
 DB_BEGI N=" / t mp/ or acl e- backup- begi n. ${ $} "
 DB_END=" / t mp/ or acl e- backup- end. ${ $} "

 # Bui l d begi n backup and end backup ORACLE ser ver manager scr i pt s
 echo " connect i nt er nal " | t ee ${ DB_BEGI N} > ${ DB_END}
 echo " ar chi ve l og l i st " >> ${ DB_BEGI N}

 # Remove header and t r ai l i ng i nf or mat i on f r om l og and bui l d t abl espace
 # di r ect i ves
 sed - e " 1, 2d" - e " \ $d" ${ SN_FI LE} . l og | \
 whi l e r ead TABLESPACE
 do
 # Di r ect i ve t o begi n backup st at e f or t he t abl espace
 echo " al t er t abl espace ${ TABLESPACE} begi n backup; " >> ${ DB_BEGI N}

 # Di r ect i ve t o end backup st at e f or t he t abl espace
 echo " al t er t abl espace ${ TABLESPACE} end backup; " >> ${ DB_END}
 done

 # Fi ni sh up di r ect i ves
 echo " ar chi ve l og l i st " >> ${ DB_END}
 echo " exi t ; " | t ee - a ${ DB_BEGI N} >> ${ DB_END}

 # Set mode of db scr i pt s
 chmod 600 ${ DB_BEGI N} ${ DB_END}

 # Put t abl espaces i nt o backup mode
 su - or acl e - c ${ ORACLE_HOME} / bi n/ svr mgr l < ${ DB_BEGI N}
 #
 # End Or acl e Speci f i c
 ######
f i

cd /

i f [" $BACKUPTYPE" = " dump"] ; t hen
 # Backup usi ng dump
 f or FS i n ${ FI LESYSTEMS}
 do
 echo " Dumpi ng ${ FS} ${ TAPEDEV_NR} " | \
 t ee - a ${ BU_LOG_DI R} / bu. uf sdump. ${ YMD}

 / usr / sbi n/ uf sdump 0f u ${ TAPEDEV_NR} ${ FS} 2>&1 | \
 # we' r e onl y concer ned wi t h t he l ast t wo l i nes of out put

 # t o det er mi ne i f t hi s was a successf ul dump
 t ee - a ${ BU_LOG_DI R} / bu. uf sdump. ${ YMD} | t ai l - 3

 # Count dump of f i l e syst em
 FS_COUNT=` expr ${ FS_COUNT} + 1`
 done
el se
 # Backup usi ng cpi o
 f or FS i n ${ FI LESYSTEMS}
 do
 echo " Wr i t i ng cpi o ar chi ve of ${ FS} t o ${ TAPEDEV_NR} " | \
 t ee - a ${ BU_LOG_DI R} / bu. cpi o. ${ YMD} . er r \
 >> ${ BU_LOG_DI R} / bu. cpi o. ${ YMD}

 # The out put of f i nd wi l l al ways be r el at i ve t o r oot
 f i nd . ${ FS} - pr i nt - xdev | \
 # Use sed t o change " . / " back t o " / " so Sol ar i s cpi o won' t bar k
 sed - e ' s/ ^ \ . \ / $/ \ / / ' | \
 cpi o - oacvC 32768 - O ${ TAPEDEV_NR} \
 2>> ${ BU_LOG_DI R} / bu. cpi o. ${ YMD} . er r \
 1>> ${ BU_LOG_DI R} / bu. cpi o. ${ YMD}

 # count cpi o ar chi ve of f i l e syst em
 FS_COUNT=` expr ${ FS_COUNT} + 1`
 done
 cat ${ BU_LOG_DI R} / bu. cpi o. ${ YMD} . er r
f i

i f [${ I S_ORACLE_MACHI NE} = " YES"] ; t hen
 # Take t abl espaces out of backup mode
 echo
 su - or acl e - c ${ ORACLE_HOME} / bi n/ svr mgr l < ${ DB_END}

 # Wai t f or r edo l ogs t o be f l ushed
 s l eep 120

 # Remove t emp f i l es
 r m ${ SN_FI LE} . l og ${ DB_BEGI N} ${ DB_END}
 FS=" ${ ORACLE_REDO_LOG_DI R} "
 cd $FS
 echo " Wr i t i ng cpi o ar chi ve of ${ FS} t o ${ TAPEDEV_NR} " | \
 t ee - a ${ BU_LOG_DI R} / bu. cpi o. r edo. ${ YMD} . er r >> ${ BU_LOG_DI R} / bu. cpi o. ${ YMD}

 f i nd . - pr i nt - xdev - f ol l ow | \
 cpi o - oacvC 32768 - O ${ TAPEDEV_NR} \
 2>> ${ BU_LOG_DI R} / bu. cpi o. r edo. ${ YMD} . er r \
 1>> ${ BU_LOG_DI R} / bu. cpi o. ${ YMD}

 # count cpi o ar chi ve of f i l e syst em
 FS_COUNT=` expr ${ FS_COUNT} + 1`
 cat ${ BU_LOG_DI R} / bu. cpi o. r edo. ${ YMD} . er r
f i

Di spl ay f i l esyst em i nf or mat i on t hat was j ust backed up
echo " ### Cur r ent l y mount ed f i l e syst ems: "
df - k ${ FI LESYSTEMS}
echo " ###"

LOG_END=` wc - l < ${ HARDWARE_LOG} `
st r i p l eadi ng and t r ai l i ng spaces
LOG_END=` expr ${ LOG_END} `
i f [" ${ LOG_BEGI N} " - ne " ${ LOG_END} "] ; t hen
 # Repor t er r or s i n l og dur i ng backup
 # add addi t i onal gr ep l i nes t o r emove nor mal messages appear i ng i n your
 # syst em l oggi ng scr i pt
 echo " ### Syst em l ogs gener at ed dur i ng backup: "
 cat ${ HARDWARE_LOG} | \
 sed - e " 1, ${ LOG_START} d" | \
 gr ep - v " connect f r om " | \
 gr ep –v " r ef used connect i on f r om " | \
 nawk ' { pr i nt subst r ($0, 1, 78) } ; \
 l engt h > 78 { pr i nt " " subst r ($0, 79) } '
 echo " ###"
f i

Remove ol d l og f i l es
i f [" ${ BACKUPTYPE} " = " cpi o"] ; t hen
 cd ${ BU_LOG_DI R}
 f i nd . - mt i me +14 - f ol l ow - exec r m { } \ ;
 l s - l t ${ BU_LOG_DI R} / *
 echo
f i

Get number of f i l e mar ks on t ape
mt - f ${ TAPEDEV_NR} eom
FMARKS_COUNT=` mt - f ${ TAPEDEV_NR} st at us | awk ' / f i l e no/ { pr i nt $3 } ' `

Number of f i l e syst ems and f i l es on t ape shoul d mat ch
i f [" ${ FMARKS_COUNT} " - ne " ${ FS_COUNT} "] ; t hen
 echo " * * * ERROR: ${ FS_COUNT} f i l e syst ems wr i t t en t o t ape. " \
 " ${ FMARKS_COUNT} act ual l y on t ape * * * n"
el se
 echo " ${ FS_COUNT} f i l e syst ems wr i t t en and ${ FMARKS_COUNT} ver i f i ed" \
 " on t ape"
f i

Ej ect t ape
mt - f ${ TAPEDEV} r ewof f l

echo " Backup Fi ni shed at " ` dat e`

References
Cooper, Clark. "Using One Script to Back Up Linux and Solaris." Sys Admin Magazine. April 2001
Volume 10 Number 04. URL: http://www.samag.com/documents/s=1152/sam0104b/ (13 Jan 2002)

Diamond, Ben. "Quick and Dirty Server/Workstation Replication Using ufsdump." Sys Admin
Magazine. April 2001 Volume 10 Number 04. URL:
http://www.samag.com/documents/s=1152/sam0104e/0104e.htm (13 Jan. 2002)

Enhanced Software Technologies. "11 Common Backup Mistakes and How To Avoid Them"
eLinux: Linux Technology Solutions. © 2000 August 24, 2001. URL:
http://www.elinux.com/articles/bru.jsp

Gebhards, Ghet. "Restoring the Sun." Sys Admin Magazine. June 1998, Vol. 7 Issue 6. URL:
http://www.samag.com/documents/s=1190/sam9806a/9806a.htm (10 Jan. 2002)

Indiana University. "Administering Backups" (Unix Workstation System Administration Education
Certification Course.) Indiana University Unix EdCert. October 7, 1997. URL:
http://www.uwsg.iu.edu/edcert/session2/backup-overview.html

Naudé, Frank. "Oracle Backup and Recovery FAQ." Underground Oracle FAQ. January 21, 2002
Revision 2.02. URL: .http://www.orafaq.com/faqdbabr.htm (12 Dec 2001)

Preston, Curtis W. "Backup on a Budget." Sys Admin Magazine. July 2001 Volume 10 Number 07.
URL: http://www.samag.com/documents/s=1148/sam0107o/ (2 Feb. 2002)

Preston, Curtis W. "Understanding Oracle Backup & Recovery." Sys Admin Magazine. September
2001 Volume 10 Number 9. URL: http://www.samag.com/documents/s=1146/sam0109g/0109g.htm
(11 Nov. 2001)

Quantum Corporation. "Data Protections Best Practices." August 24, 2001. URL:
http://www.dlttape.com/proveIt/steps/plan/best/ (3 Jan 2002)

Summit Software Design. "Backup and recovery options." September 9, 2000. URL:
http://www.summitsoftwaredesign.com/articles/article6.html (3 Feb. 2002)

Sun Microsystems. "Backing Up and Restoring Data." (System Administration Guide Part I)
Docs.Sun.Com. URL:
http://docs.sun.com/ab2/coll.47.8/SYSADV1/@Ab2PageView/idmatch(BKUPCONCEPTS-
57422)?DwebQuery=ufsdump&oqt=ufsdump&Ab2Lang=C&Ab2Enc=iso-8859-
1#BKUPCONCEPTS-57422 (3 Feb. 2002)

